Indexed by:Journal Papers
Date of Publication:2015-01-01
Journal:NEW JOURNAL OF CHEMISTRY
Included Journals:SCIE
Volume:39
Issue:2
Page Number:1051-1059
ISSN No.:1144-0546
Abstract:The photocatalytic hydrogen evolution inspired by the highly evolved, finely tuned molecular photosynthetic systems in nature represents an important process in sustainable solar energy conversion for the near future. By incorporating a phosphine donor within a thiosemicarbazone moiety, a new proton reduction catalyst Ni-thioP, featuring Ni center dot center dot center dot H interactions was synthesized and structurally characterized. Single crystal structure analysis revealed that the C-S, C-N and N-N bond lengths were all within the normal range of the single and double bonds, suggesting the extensive electron delocalization over the ligand skeleton. The presence of Ni center dot center dot center dot H interactions relative to the amide group coupled with the easy proton migration pathway involving thioamide/thiolate exchange suggested that the thiosemicarbazone complexes could serve as promising candidates for proton reduction. Luminescence titrations exhibited that Ni-thioP served as efficient luminescent quenchers for the photosensitizer Fl, providing the possibilities for the excited state of Fl to activate these catalysts for proton reduction. The direct generation of hydrogen was achieved by carrying out the photolysis of a solution containing fluorescein as the photosensitizer, and triethylamine as the sacrificial and the redox catalysts. Ni-thioP exhibited high activity with a turnover number (TON) of 8000 moles of H-2 per mole of the catalyst after 24 hours and an initial TOF larger than 500 moles of H-2 per catalyst per hour. To further investigate the potential mechanism for proton reduction, calculations were also performed using density functional theory.
Researcher
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Inorganic Chemistry
Business Address:主校区海映楼514
Open time:..
The Last Update Time:..