• 更多栏目

    吕军

    • 教授     博士生导师   硕士生导师
    • 任职 : 党委委员,航空航天系主任,院长助理
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:飞行器设计. 计算力学
    • 办公地点:大连理工大学综合实验楼1号楼410A
    • 联系方式:办公室:0411-84706915 手机号:13591733151
    • 电子邮箱:lvjun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    点击次数:

    论文类型:期刊论文

    发表时间:2016-05-01

    发表刊物:SMART MATERIALS AND STRUCTURES

    收录刊物:SCIE、EI

    卷号:25

    期号:5

    ISSN号:0964-1726

    关键字:fluid-actuated cellular structures; adaptive materials; multiscale finite element method; polygonal motor cells; topology optimization

    摘要:This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.