教授 博士生导师 硕士生导师
主要任职: 医学部党委书记兼常务副部长
性别: 男
毕业院校: 复旦大学
学位: 博士
所在单位: 生物医学工程学院
学科: 生物医学工程
电子邮箱: krqin@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2016-11-01
发表刊物: Micromachines
收录刊物: SCIE、EI、PubMed、Scopus
卷号: 7
期号: 11
ISSN号: 2072-666X
关键字: Y-shaped microfluidic device; wall shear stress; adenosine triphosphate (ATP) signal; combined effect; vascular endothelial cells; calcium dynamics
摘要: The intracellular calcium dynamics in vascular endothelial cells (VECs) in response to wall shear stress (WSS) and/or adenosine triphosphate (ATP) have been commonly regarded as an important factor in regulating VEC function and behavior including proliferation, migration and apoptosis. However, the effects of time-varying ATP signals have been usually neglected in the past investigations in the field of VEC mechanobiology. In order to investigate the combined effects of WSS and dynamic ATP signals on the intracellular calcium dynamic in VECs, a Y-shaped microfluidic device, which can provide the cultured cells on the bottom of its mixing micro-channel with stimuli of WSS signal alone and different combinations of WSS and ATP signals in one single micro-channel, is proposed. Both numerical simulation and experimental studies verify the feasibility of its application. Cellular experimental results also suggest that a combination of WSS and ATP signals rather than a WSS signal alone might play a more significant role in VEC Ca2+ signal transduction induced by blood flow.