个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:软件学院(大连理工大学-立命馆大学国际信息与软件学院)党委书记
性别:女
毕业院校:吉林大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算数学. 计算机应用技术
办公地点:大连理工大学开发区校区信息楼309室
联系方式:nalei@dlut.edu.cn
电子邮箱:nalei@dlut.edu.cn
A geometric view of optimal transportation and generative model
点击次数:
论文类型:期刊论文
发表时间:2019-01-01
发表刊物:COMPUTER AIDED GEOMETRIC DESIGN
收录刊物:SCIE、EI
卷号:68
页面范围:1-21
ISSN号:0167-8396
关键字:Optimal Mass Transportation; Monge-Ampere; GAN; Wasserstein distance
摘要:In this work, we give a geometric interpretation to the Generative Adversarial Networks (GANs). The geometric view is based on the intrinsic relation between Optimal Mass Transportation (OMT) theory and convex geometry, and leads to a variational approach to solve the Alexandrov problem: constructing a convex polytope with prescribed face normals and volumes.
By using the optimal transportation view of GAN model, we show that the discriminator computes the Wasserstein distance via the Kantorovich potential, the generator calculates the transportation map. For a large class of transportation costs, the Kantorovich potential can give the optimal transportation map by a close-form formula. Therefore, it is sufficient to solely optimize the discriminator. This shows the adversarial competition can be avoided, and the computational architecture can be simplified.
Preliminary experimental results show the geometric method outperforms the traditional Wasserstein GAN for approximating probability measures with multiple clusters in low dimensional space. (C) 2018 Elsevier B.V. All rights reserved.