Indexed by:期刊论文
Date of Publication:2019-07-01
Journal:PLASMA SCIENCE & TECHNOLOGY
Included Journals:SCIE
Volume:21
Issue:7
ISSN No.:1009-0630
Key Words:optical emission spectroscopy; partial discharge; SF6-insulated equipment; spatial and temporal evolution
Abstract:The study of sulfur hexafluoride (SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge (PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of 400 Pa, peak voltage of -1000 V, frequency of 2 kHz, pulse width of 60 mu s, and electrode gap of 5-9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreases first and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of 40-80 mu s.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:物理学院
Discipline:Plasma physics
Open time:..
The Last Update Time:..