个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 工业装备结构分析优化与CAE软件全国重点实验室主任、结构优化理论与应用国际联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 结构工程. 车辆工程
办公地点:力学楼302
联系方式:0411-84707267 ligang@dlut.edu.cn
电子邮箱:ligang@dlut.edu.cn
Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure
点击次数:
论文类型:期刊论文
发表时间:2013-06-10
发表刊物:STRUCTURAL ENGINEERING AND MECHANICS
收录刊物:SCIE、EI、Scopus
卷号:46
期号:5
页面范围:735-753
ISSN号:1225-4568
关键字:cooling tower; wind load; structural analysis; optimization design
摘要:The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.