个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Biomedical Named Entity Recognition Based on Extended Recurrent Neural Networks
点击次数:
论文类型:会议论文
发表时间:2015-11-09
收录刊物:EI、CPCI-S、Scopus
页面范围:649-652
关键字:bio-NER; recurrent neural network; hand-designed features; word embedding; context information
摘要:Biomedical named entity recognition (bio-NER), which extracts important entities such as genes and proteins, has become one of the most fundamental tasks in biomedical knowledge acquisition. However, the performance of traditional NER systems is always limited to the construction of complex hand-designed features which are derived from various linguistic analyses and maybe only adapted to specified area. In this paper we mainly focus on building a simple and efficient system for bio-NER with the extended Recurrent Neural Network (RNN) which considers the predicted information from the prior node and external context information (topical information & clustering information). Extracting complex hand-designed features is skipped and replaced with word embeddings. The experiments conducted on the BioCreative II GM data set demonstrate RNN models outperform CRF model and deep neural networks (DNN); furthermore, the extended RNN model performs better than the original RNN model.