![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Integrating Divergent Models for Gene Mention Tagging
点击次数:
论文类型:会议论文
发表时间:2009-09-24
收录刊物:EI、CPCI-S、SCIE、Scopus
页面范围:32-38
关键字:Text Mining; Gene Mention Tagging; Named Entity Recognition
摘要:Gene mention tagging is a critical step for biomedical text mining. Only when gene and gene product mentions are correctly identified could other more complex tasks, such as, gene normalization and gene-gene interaction extraction, be performed effectively. In this paper, six divergent models are implemented with different machine learning algorithms and dissimilar feature sets. We integrate these models to further improve the tagging performance. Experiments conducted on the datasets of BioCreative II GM task show that our best performing integration model can achieve an F-score of 87.70%, which outperforms most of the state-of-the-art systems. We also apply CRF++ to see if Kuo et al.'s integration algorithm based on likelihood scores and dictionary-filtering is portable to another CRF package.