![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Biomedical Domain-Oriented Word Embeddings via Small Background Texts for Biomedical Text Mining Tasks
点击次数:
论文类型:会议论文
发表时间:2018-01-01
收录刊物:CPCI-S、EI
卷号:10619
页面范围:554-564
关键字:Word embeddings; Biomedical domain-oriented word embeddings; Small background texts
摘要:Most word embedding methods are proposed with general purpose which take a word as a basic unit and learn embeddings by words' external contexts. However, in the field of biomedical text mining, there are many biomedical entities and syntactic chunks which can enrich the semantic meaning of word embeddings. Furthermore, large scale background texts for training word embeddings are not available in some scenarios. Therefore, we propose a novel biomedical domain-specific word embeddings model based on maximum-margin (BEMM) to train word embeddings using small set of background texts, which incorporates biomedical domain information. Experimental results show that our word embeddings overall outperform other general-purpose word embeddings on some biomedical text mining tasks.