个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Recognizing biomedical named entities based on the sentence vector/twin word embeddings conditioned bidirectional LSTM
点击次数:
论文类型:会议论文
发表时间:2016-10-15
收录刊物:EI
卷号:10035 LNAI
页面范围:165-176
摘要:As a fundamental step in biomedical information extraction tasks, biomedical named entity recognition remains challenging. In recent years, the neural network has been applied on the entity recognition to avoid the complex hand-designed features, which are derived from various linguistic analyses. However, performance of the conventional neural network systems is always limited to exploiting long range dependencies in sentences. In this paper, we mainly adopt the bidirectional recurrent neural network with LSTM unit to identify biomedical entities, in which the twin word embeddings and sentence vector are added to rich input information. Therefore, the complex feature extraction can be skipped. In the testing phase, Viterbi algorithm is also used to filter the illogical label sequences. The experimental results conducted on the BioCreative II GM corpus show that our system can achieve an F-score of 88.61 %, which outperforms CRF models using the complex hand-designed features and is 6.74 % higher than RNNs. © Springer International Publishing AG 2016.