个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Boosting performance of gene mention tagging system by classifiers ensemble
点击次数:
论文类型:会议论文
发表时间:2010-01-01
收录刊物:EI、Scopus
摘要:To further improve the tagging performance of single classifiers, a classifiers ensemble experimental framework is presented for gene mention tagging. In the framework, six classifiers are constructed by four toolkits (CRF++, YamCha, Maximum Entropy (ME) and MALLET) with different training methods and feature sets and then combined with a two-layer stacking algorithm. The recognition results of different classifiers are regarded as input feature vectors to be incorporated, and then a high-powered model is obtained. Experiments carried out on the corpus of BioCreative II GM task show that the classifiers ensemble method is effective and our best combination method achieves an F-score of 88.09%, which outperforms most of the top-ranked Bio-NER systems in the BioCreAtIvE II GM challenge. ?2010 IEEE.