个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
办公地点:创新大厦A930
电子邮箱:lils@dlut.edu.cn
Dynamic extended tree conditioned LSTM-based biomedical event extraction
点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS
收录刊物:SCIE
卷号:17
期号:3
页面范围:266-278
ISSN号:1748-5673
关键字:long short term memory; SVM; dynamic extended tree; biomedical event extraction; deep learning
摘要:Extracting knowledge from unstructured text has become essential to the text mining and knowledge discovery tasks in biomedical field. In this paper, we propose a novel Long Short Term Memory (LSTM) networks framework DET-BLSTM to extract biomedical events among biotope and bacteria from biomedical literature. In our framework, a dynamic extended tree is introduced as the input instead of the original sentences, which utilises the syntactic information. Furthermore, the POS and distance embeddings are added to enrich input information. In final, considering that shallow machine learning methods can effectively take advantage of the domain expert experience, the predictions of SVM are used for post-processing. Our DET-BLSTM model with post-processing achieves 58.09% F-score in the test set, which is better than all official submissions to BioNLP-ST 2016 and 2.29% higher than the best system.