李丽双

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 计算机软件与理论

办公地点:创新大厦A930

电子邮箱:lils@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions

点击次数:

论文类型:期刊论文

发表时间:2020-06-01

发表刊物:JOURNAL OF BIOMEDICAL INFORMATICS

收录刊物:SCIE

卷号:106

ISSN号:1532-0464

关键字:Drug-drug interactions; BioBERT; Entity-aware attention

摘要:Drug-drug interactions (DDIs) extraction is one of the important tasks in the field of biomedical relation extraction, which plays an important role in the field of pharmacovigilance. Previous neural network based models have achieved good performance in DDIs extraction. However, most of the previous models did not make good use of the information of drug entity names, which can help to judge the relation between drugs. This is mainly because drug names are often very complex, leading to the fact that neural network models cannot understand their semantics directly. To address this issue, we propose a DDIs extraction model using multiple entity-aware attentions with various entity information. We use an output-modified bidirectional transformer (BioBERT) and a bidirectional gated recurrent unit layer (BiGRU) to obtain the vector representation of sentences. The vectors of drug description documents encoded by Doc2Vec are used as drug description information, which is an external knowledge to our model. Then we construct three different kinds of entity-aware attentions to get the sentence representations with entity information weighted, including attentions using the drug description information. The outputs of attention layers are concatenated and fed into a multi-layer perception layer. Finally, we get the result by a softmax classifier. The F-score is used to evaluate our model, which is also adopted by most previous DDIs extraction models. We evaluate our proposed model on the DDIExtraction 2013 corpus, which is the benchmark corpus of this domain, and achieves the state-of-the-art result (80.9% in F-score).