李丽双

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 计算机软件与理论

办公地点:创新大厦A930

电子邮箱:lils@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于修正SVM-KNN组合算法的汉语专有名词自动抽取

点击次数:

论文类型:期刊论文

发表时间:2011-01-01

发表刊物:情报学报

收录刊物:PKU、ISTIC、CSSCI

卷号:30

期号:6

页面范围:610-617

ISSN号:1000-0135

关键字:KNN;SVM;专有名词抽取;不平衡数据

摘要:专有名词的自动抽取是文本挖掘、信息检索和机器翻译等领域的关键技术.本文研究了组合SVM和KNN两种分类器进行汉语专有名词自动抽取的方法.对样本在空间的不同分布使用不同的分类方法,当测试样本与SVM最优超平面的距离大于给定的阈值时使用SVM分类,否则使用KNN;在实际训练语料中,常常是负类样本数远多于正类样本数,而传统KNN方法对不平衡训练集存在敏感性,所以提出了用归一化的思想对传统的KNN方法进行修正.实验表明,用SVM与修正的KNN组合算法进行汉语专有名词抽取比单一的SVM方法以及原始的SVM-KNN方法更具优越性,而且这种方法可以推广到其他非平衡分布样本的分类问题.