论文名称:基于多头注意力的双向LSTM情感分析模型研究 论文类型:期刊论文 发表刊物:山西大学学报(自然科学版) 卷号:43 期号:1 页面范围:1-7 ISSN号:0253-2395 关键字:情感分析;深度学习;注意力机制 摘要:文本情感分析是自然语言处理领域中的重要任务,是指通过提取文本特征对基于文本的情感倾向进行分类.为了有效地提高文本情感分析准确率,提出一种新的基于多头注意力的双向长短期记忆(long short-term memory,LSTM)文本情感分析模型(Multi-Head Attention-based Bi-LSTM Model,MHA-B).模型先利用双向LSTM进行初步特征提取,再结合多头注意力机制从不同的维度和表示子空间里提取相关的信息.在Large Movie Review Dataset与Semeval-2017-task4-A English两个数据集的实验结果表明:MHA-B模型的情感分析准确率与现有多种模型相比都有所提高. 发表时间:2021-03-15