柳广飞

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院711室

联系方式:0411-84706252

电子邮箱:guangfeiliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Microbial preparation of magnetite/reduced graphene oxide nanocomposites for the removal of organic dyes from aqueous solutions

点击次数:

论文类型:期刊论文

发表时间:2015-11-03

发表刊物:RSC ADVANCES

收录刊物:SCIE、EI、Scopus

卷号:5

期号:116

页面范围:95857-95865

ISSN号:2046-2069

摘要:Magnetic graphene materials are good adsorbents for pollutant removal from aqueous solutions. However, most chemical methods for the synthesis of magnetic adsorbents generally require the use of toxic reductants, proceed under rigorous conditions, and thus cause negative impacts on the environment. Here, an eco-friendly method applying the reduction activity of microbial cells was developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for adsorptive removal of organic dyes. The biogenic MRGO was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and vibrating sample magnetometry. Factors (adsorbent dosage, contact time, solution pH and ionic strength, etc.) affecting the adsorption process were investigated. The adsorption behavior of MRGO fits well with a Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity of MRGO for methylene blue at 303 K was determined to be 144.9 mg g(-1), which is higher than those of many other chemically synthesized magnetic graphene materials. Thermodynamic analysis revealed the spontaneous and endothermic nature of the adsorption process. Moreover, the MRGO adsorbent could be regenerated through a Fenton-like reaction and reused effectively in five successive runs. The biogenic MRGO has great potential for the treatment of wastewater containing dyes and other environmental pollutants.