刘红

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:工程热物理

办公地点:能源与动力学院626

联系方式:hongliu@dlut.edu.cn

电子邮箱:hongliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Establishment of an improved heat transfer model based on an enhanced thermal wall function for internal combustion engines operated under different combustion modes

点击次数:

论文类型:期刊论文

发表时间:2019-09-01

发表刊物:ENERGY CONVERSION AND MANAGEMENT

收录刊物:SCIE、EI

卷号:195

页面范围:748-759

ISSN号:0196-8904

关键字:Heat transfer; Thermal wall function; In-cylinder turbulence; Prandtl number; Internal combustion engine

摘要:The heat transfer from the in-cylinder gases to the wall dramatically affects the combustion and emission characteristics of internal combustion engines, particularly for the engines operated with advanced low-temperature combustion modes. In the present work, an improved heat transfer model was established based on an enhanced thermal wall function using the piecewise functions, in which only the laminar Prandtl number is considered in the viscous sublayer, and the competition between the laminar Prandtl number and the turbulent Prandtl number is taken into account in the buffer layer and turbulent core regions. By implementing the improved heat transfer model into a computational fluid dynamics code, the predictions of the combustion processes and the heat transfer behaviors of an engine operated with conventional diesel combustion, homogeneous charge compression ignition, and reactivity controlled compression ignition modes were validated by the experimental data. Moreover, the computational results from two previous heat transfer models, i.e., Han and Reitz model and Rakopoulos et al. model, were presented for comparison. The results indicate that the heat flux characteristics under different combustion modes can be more satisfactorily reproduced using the improved heat transfer model than Han and Reitz model and Rakopoulos et al, model by avoiding the flaws in the thermal wall function. Finally, the influence of the dimensionless distance of the computational grid adjacent to the wall on the predicted heat flux was discussed to study the dependence of the heat transfer model on the size of the near wall computational grid.