教授 博士生导师 硕士生导师
性别: 男
毕业院校: 东北师范大学
学位: 博士
所在单位: 生物工程学院
学科: 生物化工. 生物化学与分子生物学. 生物工程
办公地点: 生物工程学院401室
联系方式: 13624087256
电子邮箱: luanyush@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-09-01
发表刊物: FOOD RESEARCH INTERNATIONAL
收录刊物: PubMed、SCIE
卷号: 111
页面范围: 50-57
ISSN号: 0963-9969
关键字: Homemade soybean pastes; Illumina Miseq Sequencing; Bacterial diversity; Fungal diversity
摘要: Traditional Chinese soybean pastes are homemade using natural fermentation and are quite common and popular in Liaoning Province. In this study, we investigated microbial diversity by collecting 23 samples from 10 cities and sequenced them using 2 x 300 bp Illumina Miseq Sequencing. 16S and ITS primers were used to amplify the V3-V4 region of the bacterial 16S rRNA gene and the ITS1 region of the fungal ITS rDNA gene, respectively. In total, 687,888 filtered bacterial sequences were obtained from nineteen samples and 1,091,649 filtered fungal sequences were obtained from twenty samples. Among the bacterial sequences, Firmicutes (74.77%), Proteobacteria (22.61%), and Actinobacteria (2.55%) were the predominant phyla, with Staphylococcus making up most of the Firmicutes. Among the fungal sequences, Ascomycota, Basidiomycota and Zygomycota accounted for 94.88%, 3.29% and 1.77%, respectively, while Glomeromycota and Chytridiomycota accounted for the remaining 0.06%. Most of the species from Ascomycota were unclassified Trichocomaceae and Debaryomyces, including 404578 and 187827 sequences, respectively. The microbial community in each sample was unique, most likely due to the geographical differences and external factors including the environment and manufacturing process during the fermentation. Soybean paste is the result of fermentation involving a great diversity of microorganisms, which include not only bacteria but also fungi.