教授 博士生导师 硕士生导师
性别: 男
毕业院校: 东北师范大学
学位: 博士
所在单位: 生物工程学院
学科: 生物化工. 生物化学与分子生物学. 生物工程
办公地点: 生物工程学院401室
联系方式: 13624087256
电子邮箱: luanyush@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-12-01
发表刊物: PLANTA
收录刊物: PubMed、SCIE、Scopus
卷号: 248
期号: 6
页面范围: 1487-1503
ISSN号: 0032-0935
关键字: Biotic and abiotic stresses; MYB; Resistance; Tolerance; Tomato
摘要: Main conclusionMYB49-overexpressing tomato plants showed significant resistance to Phytophthora infestans and tolerance to drought and salt stresses. This finding reveals the potential application of tomato MYB49 in future molecular breeding.Biotic and abiotic stresses severely reduce the productivity of tomato worldwide. Therefore, it is necessary to find key genes to simultaneously improve plant resistance to pathogens and tolerance to various abiotic stresses. In this study, based on homologous relationships with Arabidopsis R2R3-MYBs (AtMYBs) involved in responses to biotic and abiotic stresses, we identified a total of 24 R2R3-MYB transcription factors in the tomato genome. Among these tomato R2R3-MYBs, MYB49 (Solyc10g008700.1) was clustered into subgroup 11 by phylogenetic analysis, and its expression level was significantly induced after treatment with P. infestans, NaCl and PEG6000. Overexpression of MYB49 in tomato significantly enhanced the resistance of tomato to P. infestans, as evidenced by decreases in the number of necrotic cells, sizes of lesion, abundance of P. infestans, and disease index. Likewise, MYB49-overexpressing transgenic tomato plants also displayed increased tolerance to drought and salt stresses. Compared to WT plants, the accumulation of reactive oxygen species (ROS), malonaldehyde content, and relative electrolyte leakage was decreased, and peroxidase activity, superoxide dismutase activity, chlorophyll content, and photosynthetic rate were increased in MYB49-overexpressing tomato plants under P. infestans, salt or drought stress. These results suggested that tomato MYB49, as a positive regulator, could enhance the capacity to scavenge ROS, inhibit cell membrane damage and cell death, and protect chloroplasts, resulting in an improvement in resistance to P. infestans and tolerance to salt and drought stresses, and they provide a candidate gene for tomato breeding to enhance biotic stress resistance and abiotic stress tolerance.