Ling Luo   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE>
Language:English
  • 中文

Personal Profile

Dr. Ling Luo is a professor in School of Computer Science and Technology at Dalian University of Technology. His research interests include Natural Language Processing, Biomedical Text Mining, and Deep Learning for Healthcare. He has contributed to biomedical text mining research by developing novel deep learning methods to unstructured text data in the biomedical literature, especially for the tasks of document classification, named entity recognition and relation extraction. Dr. Luo's long-term research goal is to develop computational methods to better understand the natural language in biomedical text in order to accelerate knowledge discovery and improve health. Over the years, Dr. Luo has co-authored over 40 papers in leading journals and conferences such as Briefings in Bioinformatics, Bioinformatics, Nucleic Acids Research, and BIBM. Dr. Luo won the first place in multiple tasks at the famous international biomedical text mining challenge BioCreative.

(See https://lingluodlut.github.io/ for more information).


Research Projects

1. Young Scientists Fund of the National Natural Science Foundation of China (principal investigator), Research on patient-centric personalized information extraction from biomedical literature, 62302076, 2024-2026.

2. NIH intermural research project (Participation), Named Entity Recognition and Relationship Extraction in Biomedicine, 1ZIALM091813, 2020-2023.

3. National Key Research and Development Program of China, Construction of Knowledgebase of Precision Medicine for Disease Studies, No. 2016YFC0901902, 2016-2020.


Selected Publications:

1. L Luo, CH Wei, PT Lai, R Leaman, Q Chen, Z Lu. AIONER: all-in-one scheme-based biomedical named entity recognition using deep learning [J]. Bioinformatics, 2023, 39(5): btad310. (JCR Q1, IF: 6.931)

2. L Luo, PT Lai, CH Wei, CN Arighi, Z Lu. BioRED: a rich biomedical relation extraction dataset [J]. Briefings in Bioinformatics, 2022, bbac282. (JCR Q1, IF: 13.994)

3. L Luo, CH Wei, PT Lai, Q Chen, R Islamaj, Z Lu. Assigning species information to corresponding genes by a sequence labeling framework [J]. Database-The Journal of Biological Databases and Curation, 2022, 2022: baac090. (JCR Q1, IF: 4.462)

4. L Luo, S Yan, PT Lai, D Veltri, A Oler, S Xirasagar, R Ghosh, M Similuk, P Robinson, Z Lu. PhenoTagger: A Hybrid Method for Phenotype Concept Recognition using Human Phenotype Ontology [J]. Bioinformatics, 2021, 37(13):1884-1890. (JCR Q1, IF: 6.931)

5. L Luo, Z Yang, M Cao, L Wang, Y Zhang, H Lin. A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature [J]. Journal of Biomedical Informatics, 2020, 103: 103384. (JCR Q1, IF: 8.000)

6. L Luo, Zhihao Yang, Yawen Song, Nan Li and Hongfei Lin. Chinese Clinical Named Entity Recognition Based on Stroke ELMo and Multi-Task Learning [J] . Chinese Journal of Computers, 2020, 43(10):1943-1957. (In Chinese, CCF-A )

7. L Luo, Z Yang, P Yang, Y Zhang, L Wang, H Lin, J Wang. An attentionbased BiLSTM-CRF approach to document-level chemical named entity recognition [J]. Bioinformatics, 2018, 34(8): 1381-1388. (JCR Q1, IF: 6.931)

8. L Luo, Z Yang, L Wang, Y Zhang, H Lin, J Wang, L Yang, K Xu, Y Zhang. Protein-Protein Interaction Article Classification: A Knowledge-enriched Self-Attention Convolutional Neural Network Approach [C]. Procceding of 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018. (CCF-B)

9. L Luo, Z Yang, P Yang, Y Zhang, L Wang, J Wang, H Lin. A neural network approach to chemical and gene/protein entity recognition in patents [J]. Journal of Cheminformatics, 2018, 10: 65. (JCR Q1, IF: 8.489)


Challenges:

1. BioCreative VII Challenge: Text mining drug and chemical-protein interactions (DrugProt) Track, The Second Place

2. The 2019 China Conference on Knowledge Graph and Semantic Computing (CCKS 2019) Challenge: Chinese Clinical Named Entity Recognition Task, The Third Place 

3. The 2018 China Conference on Knowledge Graph and Semantic Computing (CCKS 2018) Challenge: Chinese Clinical Named Entity Recognition Task, The Third Place 

4. BioCrative VI Precision Medicine Track: Document Triage Task, The Second Place 

5. BioCreative V.5 Challenge: The CEMP (Chemical Entity Mention in Patents) Task, The First Place 

6. BioCreative V.5 Challenge: The GPRO (Gene and Protein Related Object) Task, The First Place 


Education Background

  • 2014.09-2019.11  

    Dalian University of Technology       Computer Applied Technology       Doctoral Degree

  • 2011.09-2014.06  

    Xiamen University       Artificial Intelligence       Master's Degree

  • 2007.09-2011.07  

    Xiamen University       Artificial Intelligence       Bachelor's Degree

Work Experience

  • 2023.02-Now

    Dalian University of Technology      School of Computer Science and Technology      Associate Professor

  • 2020.01-2023.01

    National Institutes of Health (NIH)      National Center for Biotechnology Information (NCBI)      Postdoc Fellow

Research Group

Name of Research Group:

大连理工大学信息检索研究室(DUTIR)

Description of Research Group:

信息检索研究室(DUTIR)在林鸿飞教授领导下,坚持理论研究和实际应用相结合,与国外大学和研究机构保持良好的合作关系。我们专注于互联网上内容的搜索、分析、理解和诠释,挖掘出潜在的、有价值的、新颖的知识模式,创造人机和谐的网络环境。我们的研究方向是信息检索、自然语言处理、推荐系统、社会计算、情感计算、面向生物医学领域的文本挖掘等。信息检索技术涉及到自然语言处理、机器学习、认知科学等诸多理论和技术,是一个富有朝气和希望的研究领域。研究室营造宽松和谐的研究环境,悉心培养信息检索领域的优秀人才。鼓励学生积极参与各项学术活动,同时举办丰富多彩的文体活动,让学生受到多方面的熏陶。互联网上烽烟渐浓,鏖战正急。欢迎各位青年才俊,加入我们阵营,创出一片天地!
Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:   MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open Time:..

The Last Update Time: ..