扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
A globally convergent method based on Fischer-Burmeister operators for solving second-order cone constrained variational inequality problems

点击次数:
论文类型:期刊论文
发表时间:2009-11-01
发表刊物:COMPUTERS & MATHEMATICS WITH APPLICATIONS
收录刊物:SCIE、EI、Scopus
卷号:58
期号:10
页面范围:1936-1946
ISSN号:0898-1221
关键字:Second-order cone; Variational inequality; Fischer-Burmeister function; B-subdifferential; Modified Newton method
摘要:The Karush-Kuhn-Tucker system of a second-order cone constrained variational inequality problem is transformed into a semismooth system of equations with the help of Fischer-Burmeister operators over second-order cones. The Clarke generalized differential of the semismooth mapping is presented. A modified Newton method with Armijo line search is proved to have global convergence with local superlinear rate of convergence under certain assumptions on the variational inequality problem. An illustrative example is given to show how the globally convergent method works. (C) 2009 Elsevier Ltd. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学