扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 张立卫 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1992011039/en/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
SOLVING A CLASS OF INVERSE QP PROBLEMS BY A SMOOTHING NEWTON METHOD

点击次数:
论文类型:期刊论文
发表时间:2009-11-01
发表刊物:JOURNAL OF COMPUTATIONAL MATHEMATICS
收录刊物:SCIE、Scopus
卷号:27
期号:6
页面范围:787-801
ISSN号:0254-9409
关键字:Fischer-Burmeister function; Smoothing Newton method; Inverse optimization; Quadratic programming; Convergence rate
摘要:We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC(1)) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学