徐立昕

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:物理学院

学科:理论物理

办公地点:物理学院211室

联系方式:lxxu .AT. dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Galaxy clustering, CMB and supernova data constraints on phi CDM model with massive neutrinos

点击次数:

论文类型:期刊论文

发表时间:2016-01-10

发表刊物:PHYSICS LETTERS B

收录刊物:SCIE

卷号:752

页面范围:66-75

ISSN号:0370-2693

摘要:We investigate a scalar field dark energy model (i.e., phi CDM model) with massive neutrinos, where the scalar field possesses an inverse power-law potential, i.e., V(phi) alpha phi(-alpha) (alpha > 0). We find that the sum of neutrino masses Sigma m(nu) has significant impacts on the CMB temperature power spectrum and on the matter power spectrum. In addition, the parameter alpha also has slight impacts on the spectra. A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the parameters. Within the context of the phi CDM model under consideration, the joint sample determines the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be theta(*) = (1.0415(0.0011)(+0.0012)) x 10(-2), tau = 0.0914(0.0242)(+0.0266), Omega(b)h(2)= 0.0222 +/- 0.0005, Omega(c)h(2) = 0.1177 +/- 0.0036, and n(s) = 0.9644(-0.0119)(+0.0118), respectively, at 95% confidence level (CL). It turns out that alpha < 4.995 at 95% CL for the phi CDM model. And yet, the Lambda CDM scenario corresponding to alpha = 0 is not ruled out at 95% CL. Moreover, we get Sigma m(nu) < 0.262 eV at 95% CL for the phi CDM model, while the corresponding one for the Lambda CDM model is Sigma m(nu) < 0.293 eV. The allowed scale of Sigma m(nu) in the phi CDM model is a bit smaller than that in the Lambda CDM model. It is consistent with the qualitative analysis, which reveals that the increases of alpha and Sigma m(nu) both can result in the suppression of the matter power spectrum. As a consequence, when alpha is larger, in order to avoid suppressing the matter power spectrum too much, the value of Sigma m(nu) should be smaller. (C) 2015 The Authors. Published by Elsevier B.V.