马震岳

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水利水电工程

办公地点:建设工程学部综合试验三号楼

联系方式:dmzy@dlut.edu.cn

电子邮箱:dmzy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull

点击次数:

论文类型:期刊论文

发表时间:2013-06-01

发表刊物:ARCHIVE OF APPLIED MECHANICS

收录刊物:SCIE、EI、Scopus

卷号:83

期号:6

页面范围:817-830

ISSN号:0939-1533

关键字:Hydraulic generating set; Rotor-bearing system; Rub-impact; Unbalanced magnetic pull; Nonlinear dynamics

摘要:Electromagnetic and mechanical forces are main reasons resulting in vibrations in hydraulic generating set. The non-symmetric air-gap between the rotor and stator creates an attraction force called unbalanced magnetic pull (UMP). The UMP can produce large oscillations which will be dangerous to the machines. In this paper, the nonlinear dynamic characteristics of a rotor-bearing system with rub-impact for hydraulic generating set under the UMP are studied. The rubbing model is established based on the classic impact theory. Through the numerical calculation, the excitation current, mass eccentricity, stiffness of shaft and radial stiffness of stator are used as control parameters to investigate their effect on the system, by means of bifurcation diagrams, Poincar, maps, trajectories and frequency spectrums. Various nonlinear phenomena including periodic, quasi-periodic and chaotic motions are observed. The results reveal that the UMP has significant influence in the response of the rotor system that the continuous increase in the excitation current induces the alternation of quasi-periodic and chaotic motions, the co-occurrence of oil whip and rub in a wide excitation range aggravates the vibration and leads to the instability of the system. In addition, the large eccentricity and radial stiffness of stator, as well as the small stiffness of shaft may lead to the occurrence of full annular rubbing while increasing the stiffness of the shaft can play an important role of suppressing the chaotic motion, reducing the vibration and improving stability of the system.