![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 计算机软件与理论
Protein Function Prediction based on Physiochemical Properties and Protein Granularity
点击次数:
论文类型:会议论文
发表时间:2013-12-13
收录刊物:EI、CPCI-S、Scopus
页面范围:342-346
关键字:Protein prediction; Protein granularity; Feature extraction
摘要:Assigning biological function to uncharacterized proteins is a fundamental problem in the post-genomic age. The increasing availability of large amounts of data on protein sequences has led to the emergence of developing effective computational methods for quickly and accurately predicting their functions. In this work, we extract 353 numerical features from sequences based not only on physiochemical properties but also on protein granularity. A tool in exploratory data analysis, Principal Component Analysis (PCA), is applied to obtain an optimized feature set by excluding poor-performed or redundant features, resulting in 204 remaining features. Then the optimized 204-feature subset is used to predict protein function with k-nearest neighbors algorithm (KNN). This prediction model achieves an overall accurate prediction rate of 84.6%. The experiment results show that our approach is quite efficient to predict functional class of unknown proteins.