孟军

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 计算机软件与理论

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Protein Function Prediction based on Physiochemical Properties and Protein Granularity

点击次数:

论文类型:会议论文

发表时间:2013-12-13

收录刊物:EI、CPCI-S、Scopus

页面范围:342-346

关键字:Protein prediction; Protein granularity; Feature extraction

摘要:Assigning biological function to uncharacterized proteins is a fundamental problem in the post-genomic age. The increasing availability of large amounts of data on protein sequences has led to the emergence of developing effective computational methods for quickly and accurately predicting their functions. In this work, we extract 353 numerical features from sequences based not only on physiochemical properties but also on protein granularity. A tool in exploratory data analysis, Principal Component Analysis (PCA), is applied to obtain an optimized feature set by excluding poor-performed or redundant features, resulting in 204 remaining features. Then the optimized 204-feature subset is used to predict protein function with k-nearest neighbors algorithm (KNN). This prediction model achieves an overall accurate prediction rate of 84.6%. The experiment results show that our approach is quite efficient to predict functional class of unknown proteins.