孟军

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 计算机软件与理论

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Normalized Encoder-Decoder Model for Abstractive Summarization Using Focal Loss

点击次数:

论文类型:会议论文

发表时间:2018-01-01

收录刊物:CPCI-S

卷号:11109

页面范围:383-392

关键字:Summarization; Seq2Seq; Pre-trained word embedding; Normalized encoder-decoder structure; Focal loss

摘要:The summarization based on seq2seq model is a popular research topic today. And pre-trained word embedding is a common unsupervised method to improve deep learning model's performance in NLP. However, during applying this method directly to the seq2seq model, we find it does not achieve the same good result as other fields because of an over training problem. In this paper, we propose a normalized encoder-decoder structure to address it, which can prevent the semantic structure of pre-trained word embedding from being destroyed during training. Moreover, we use a novel focal loss function to help our model focus on those examples with low score for getting better performance. We conduct the experiments on NLPCC2018 share task 3: single document summary. Result showed that these two mechanisms are extremely useful, helping our model achieve state-of-the-art ROUGE scores and get the first place in this task from the current rankings.