孟军

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 计算机软件与理论

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于密度网格树的数据流聚类算法

点击次数:

论文类型:会议论文

发表时间:2009-11-14

页面范围:432-438

关键字:密度网格密度;数据流聚类算法;数据结构

摘要:提出一种采用树型概要结构的密度网格树流聚类算法DG-Tree(Density and Grid-Tree Algorithm)。该算法利用数据流聚类算法CluStream中的处理框架,把聚类分为微聚类和宏聚类两个过程。在微聚类过程中,通过把数据流按属性值分配到一棵树中,消除了空刚格对聚类结果的影响,同时针对数据流聚类中,近期的数据往往比久远的数据更受关注的特点,引入了时间衰退模型;在宏聚类过程中,对微聚类中生成的树中的叶子节点进行密度聚类,通过设立噪音密度阀值函数和更新周期,不仅可以有效的发现噪音叶子节点,还减少了密度聚类中对叶子节点密度更新的计算量,减少了算法的时间消耗。通过在KDD Cup 99数据集上的实验表明,相比DBScan算法和CluStream算法,DG-Tree算法在时间效率上有很大提高。