Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title of Paper:Saliency Detection via Depth-Induced Cellular Automata on Light Field
Hits:
Date of Publication:2020-01-01
Journal:IEEE TRANSACTIONS ON IMAGE PROCESSING
Included Journals:EI、SCIE
Volume:29
Page Number:1879-1889
ISSN No.:1057-7149
Key Words:Saliency detection; Image color analysis; Automata; Three-dimensional displays; Two dimensional displays; Visualization; Computational modeling; Saliency detection; light field; focusness cue; depth cue; depth-induced cellular automata (DCA) model
Abstract:Incorrect saliency detection such as false alarms and missed alarms may lead to potentially severe consequences in various application areas. Effective separation of salient objects in complex scenes is a major challenge in saliency detection. In this paper, we propose a new method for saliency detection on light field to improve the saliency detection in challenging scenes. We construct an object-guided depth map, which acts as an inducer to efficiently incorporate the relations among light field cues, by using abundant light field cues. Furthermore, we enforce spatial consistency by constructing an optimization model, named Depth-induced Cellular Automata (DCA), in which the saliency value of each superpixel is updated by exploiting the intrinsic relevance of its similar regions. Additionally, the proposed DCA model enables inaccurate saliency maps to achieve a high level of accuracy. We analyze our approach on one publicly available dataset. Experiments show the proposed method is robust to a wide range of challenging scenes and outperforms the state-of-the-art 2D/3D/4D (light-field) saliency detection approaches.
Open time:..
The Last Update Time: ..