闵小华

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:埼玉大学

学位:博士

所在单位:材料科学与工程学院

学科:材料学. 材料加工工程

办公地点:材料馆304室

联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 材料科学与工程学院 116024 办公电话0411-84708189 手机13149898722

电子邮箱:minxiaohua@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity beta titanium alloy

点击次数:

论文类型:期刊论文

发表时间:2016-04-06

发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

收录刊物:SCIE、EI

卷号:659

页面范围:1-11

ISSN号:0921-5093

关键字:Titanium alloy; Twinning structure evolution; Crystallographic orientation; Strain hardening; Electron backscatter diffraction

摘要:The (332) < 113 > twinning structure evolution in nearly [122] and 1001] oriented grains was quantitatively examined in a polycrystalline Ti-15Mo alloy at various tensile strains. Twinning with a single variant, which obeyed Schmid's law, was induced in [122] grain after yielding. The area fraction of twins rapidly increased from 3% to W69% with strain from 0.02 to 0.15, and changed gradually to 81% at strains of up to 0.25. In [001] grain, twin formation violating Schmid's law with three variants was confirmed after the strain reached 0.01. Twins with an area fraction of 0.7% showed no significant change with further deformation. The contribution of deformation modes to the total tensile strain in [122] grain was dominated by twinning at strains of up to 0.15, and became dislocation slip with further deformation. In [001] grain, dislocation slip mainly contributed to the plastic deformation over the entire strain range. Dynamic microstructure refinement arising from twinning, namely the dynamic Hall-Petch effect, was the main strain hardening mechanism in [122] grain at strains of up to 0.15. However, strain hardening caused by twinning was negligible in [001] grain. The effects of local stress concentration and geometric constraint between neighboring grains on the deformation microstructural evolution and strain hardening behavior should also be considered. (C) 2016 Elsevier B.V. All rights reserved.