• 更多栏目

    李小松

    • 高级工程师       硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:物理学院
    • 电子邮箱:lixsong@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Catalytic formaldehyde removal by "storage-oxidation" cycling process over supported silver catalysts

    点击次数:

    论文类型:期刊论文

    发表时间:2012-08-15

    发表刊物:CHEMICAL ENGINEERING JOURNAL

    收录刊物:SCIE、EI、Scopus

    卷号:200

    页面范围:729-737

    ISSN号:1385-8947

    关键字:Formaldehyde; Storage; Catalytic oxidation; Silver catalysts

    摘要:Catalytic removal of indoor HCHO was proposed to proceed in a "storage-oxidation" cycling process. Two kinds of supported silver catalysts, namely Ag/HZSM-5 and Ag-MnOx-CeO2. were investigated as catalysts for this cycling process. Due to the highly dispersed silver clusters formed and its good redox properties, the Ag-MnOx-CeO2 catalyst showed better HCHO oxidation properties in both the storage phase (HCHO partial oxidation to HCOO- at room temperature) and oxidation-regeneration phase (total oxidation of the formates into CO2 and H2O at elevated temperatures). The presence of H2O (RH = 50%, 25 degrees C) was found to enhance the HCHO storage capacity for Ag-MnOx-CeO2 catalyst, while competitive adsorption of HCHO with H2O was observed over Ag/HZ catalyst. The results of DRIFTS indicate that the partial oxidation of HCHO into HCOO- is accelerated by the presence of H2O over the Ag-MnOx-CeO2 catalyst. In addition, the catalyst saturated with HCHO can be in situ regenerated without production of secondary pollutants and can be used repeatly. It is suggested that this is a promising approach for indoor HCHO elimination. (C) 2012 Elsevier B.V. All rights reserved.