个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:日本熊本大学
学位:博士
所在单位:环境学院
学科:环境工程. 环境科学
办公地点:环境学院(西部校区)
联系方式:qiaosen@dlut.edu.cn
电子邮箱:qiaosen@dlut.edu.cn
Effects of quinoid redox mediators on the activity of anammox biomass
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:BIORESOURCE TECHNOLOGY
收录刊物:SCIE、EI、PubMed
卷号:152
页面范围:116-123
ISSN号:0960-8524
关键字:Anammox; Redox mediator; Hydrazine dehydrogenase; Nitrite reductase; Nitrate reductase
摘要:This study first explored the relationship between the activity of anammox biomass/key enzymes and quinoid redox mediators, which were anthraquinone-2,6-disulfonate (AQDS), 2-hydroxy-1,4-napthoquinone (LAW) and anthraquinone-2-carboxylic acid (AQC). Experimental results demonstrated that the total nitrogen removal performance showed a downward trend with all three redox mediators (RMs) dosage increasing. For instance, when the AQC addition increased to 0.8 mM, the TN removal rate sharply reduced to 17.2 mg-N/gVSS/h, only about 20% of the control. This phenomenon might be caused by microbial poisoning with the extracellular RMs additions. Nevertheless, the crude hydrazine dehydrogenase, nitrite reductase, and nitrate reductase activities were enhanced with RMs addition, about 0.6-3 folds compared to the control experiments without RMs addition. The RMs was inferred to play the role as ubiquinol/ubiquinone (Q/QH(2)) during the anammox process. Furthermore, the specific ladderane membrane structure could block the contacting between RMs and the key enzymes inside anammoxosome. This might be the main reason for the contrary effects of RMs on anammox biomass and the key enzymes. (C) 2013 Elsevier Ltd. All rights reserved.