乔森

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:日本熊本大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院(西部校区)

联系方式:qiaosen@dlut.edu.cn

电子邮箱:qiaosen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Partial nitrification treatment for high ammonium wastewater from magnesium ammonium phosphate process of methane fermentation digester liquor

点击次数:

论文类型:期刊论文

发表时间:2010-02-01

发表刊物:JOURNAL OF BIOSCIENCE AND BIOENGINEERING

收录刊物:SCIE、EI、Scopus

卷号:109

期号:2

页面范围:124-129

ISSN号:1389-1723

关键字:Partial nitrification; Ammonium-rich wastewater; Magnesium ammonium phosphate precipitation; Free ammonia and free nitrous acid effect

摘要:This study investigated partial nitrification treatment of methane fermentation digester liquor effluent from magnesium ammonium phosphate precipitation process in a swim-bed reactor. The reactor was operated at a temperature of 35 degrees C and pH between 7.5 and 7.8. Partial nitrification was achieved at the onset of the experiments even though conventional activated sludge was used as seed sludge. The maximum nitrite production rate was 1.0 kg NO(2)-N/m(3)/d at a nitrogen loading rate of 2.0 kg-N/m(3)/d. The average effluent NO(2)-N/NH(4)-N ratio and the effluent NO(3)-N concentration were 1.04 +/- 0.34 and 5.7 mg/I, respectively, during the stable experiment periods. After 150 days of operation, the sludge volume index value decreased to 15 ml/g and the mean particle size of suspended sludge increased by approximately 3 times from 80 to 260 mu m. Comparison of mineral analysis between the seed sludge and the partial nitrification sludge demonstrated that the mineral content of the latter increased approximately three-fold in comparison to that of the former. High Ca concentration was considered to be closely related to dense floc formation and superior settleability of the sludge. Both DGGE and DNA clone analysis verified that there were significant microbiological differences between the samples taken at different time periods. Nitrosomonas was confirmed to be the predominant species after stable partial nitrification performance was obtained. The overall results of this study validated our previous results that swim-bed reactor technology could be successfully used as a pre-treatment technology for anammox treatment. (C) 2009, The Society for Biotechnology, Japan. All rights reserved.