• 更多栏目

    史彦军

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:工业工程. 机械电子工程. 机械设计及理论. 机械制造及其自动化
    • 办公地点:西部校区机械工程学院知方楼
    • 联系方式:Tel: 86-411-84709130 Mobile: 86-13940800853
    • 电子邮箱:syj@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Hybridizing Invasive Weed Optimization and Simulated Annealing Algorithm for High-dimensional Function Optimization

    点击次数:

    论文类型:会议论文

    第一作者:Hou, Luyang

    合写作者:Shi, Yanjun,Zheng, Xiaojun

    发表时间:2014-08-23

    收录刊物:EI、CPCI-S、Scopus

    卷号:1049

    页面范围:1436-+

    关键字:Invasive weed optimization; Simulated annealing; Metropolis criterion; optimization

    摘要:We herein propose an efficient algorithm (called IWOSA herein after) hybridizing invasive weed optimization (IWO for short) with the simulated annealing (SA) algorithm. The IWO is a new algorithm proposed to solve actual practical problems, which imitates the invasive behavior of weeds in nature. In the further research IWO algorithm did not show its efficiency in high-dimensional problems, and lacked directivity in the process of IWOSA iterations. To deal with this problem, we employed IWO to provide diversity to explore solution and Metropolis criterion of SA to provide more precise guidance, and tried to improve accuracy and convergence speed by these steps. To test the proposed algorithm, we compared IWOSA with original IWO through high-dimensional optimization benchmark functions. The computational results showed the efficiency of our algorithm.