• 更多栏目

    史彦军

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:工业工程. 机械电子工程. 机械设计及理论. 机械制造及其自动化
    • 办公地点:西部校区机械工程学院知方楼
    • 联系方式:Tel: 86-411-84709130 Mobile: 86-13940800853
    • 电子邮箱:syj@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    An efficient hybrid algorithm for resource-constrained project scheduling

    点击次数:

    论文类型:期刊论文

    第一作者:Chen, Wang

    通讯作者:Shi, YJ (reprint author), Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China.

    合写作者:Shi, Yan-jun,Teng, Hong-fei,Lan, Xiao-ping,Hu, Li-chen

    发表时间:2010-03-15

    发表刊物:INFORMATION SCIENCES

    收录刊物:SCIE、EI

    卷号:180

    期号:6,SI

    页面范围:1031-1039

    ISSN号:0020-0255

    关键字:Project management; Scheduling; Ant colony optimization; Scatter search; Project scheduling

    摘要:We propose an efficient hybrid algorithm, known as ACOSS, for solving resource-constrained project scheduling problems (RCPSP) in real-time The ACOSS algorithm combines a local search strategy. ant colony optimization (ACO), and a scatter search (SS) in an iterative process In this process, ACO first searches the Solution Space and generates activity lists to provide the initial population for the SS algorithm. Then, the SS algorithm builds a reference set from the pheromone trails of the ACO, and improves these to obtain better solutions Thereafter, the ACO uses the improved solutions to update the pheromone set. Finally in this iteration, the ACO searches the solution set using the new pheromone trails after the SS has terminated In ACOSS, ACO and the SS share the solution space for efficient exchange of the Solution set The ACOSS algorithm is compared with state-of-the-art algorithms using a set of standard problems available in the literature The experimental results validate the efficiency of the proposed algorithm (C) 2009 Elsevier Inc All rights reserved.