location: Current position: Home >> Scientific Research >> Paper Publications

Fabrication, surface modification and analysis of biocompatibility of biologic chitosan scaffold

Hits:

Indexed by:会议论文

Date of Publication:2008-01-01

Included Journals:EI、CPCI-S

Volume:373-374

Page Number:654-657

Key Words:chitosan; scaffold; surface modification; MSCs; biocompatibility

Abstract:In this study, the surface modification and biocompatibility of the biologic chitosan scaffold were investigated. The chitosan scaffold with excellent reticular structure was attained after being purified, emulsionized, cross-linked, molded and freeze-dried step by step by using the native materials, coming from such as lobster shell, crab shell etc.. After that, its surface modification was operated with film coating by using gelatin. Then the bone marrow mesenchymal stem cells (BMSCs) derived from New Zealand rabbits were used as the seed cells and were inoculated onto the modified biologic chitosan scaffolds at 3 x 10(5) cells/ml to investigate the biocompatibility and bone conductive efficiency of this kind of scaffold in static culture for one week. As a control, the cell suspensions with same densities were inoculated onto the chitosan scaffold without being treated. During the whole culture process, the cellular adherence and expansion were observed under inverted microscope. After culture, the biological properties of the fabricated cell-scaffold tissues were detected by scanning electron microscope (SEM) and HO/PI fluorescent double staining. The results showed that the biologic chitosan scaffold treated with gelatin or rat-tail collagen promoted a higher adhesion and proliferation of BMSCs in comparison to the untreated samples. Besides, the BMSCs within the treated scaffold were more regular and well-distributed than those in untreated one. It is concluded that this kind of surface modification can be used to change the physicochemical properties of chitosan scaffold. The improved biologic chitosan scaffold is suitable to be an ideal biomedical scaffold for tissue engineering.

Pre One:Optimum ratio of osteoblasts and HSCs co-cultured in hypoxic condition

Next One:Bio-derived bone surface modification with biomimetic thin film coatings to improve mesenchymal stem cells adhesion and spreading