Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Bingbing Sun

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Main positions:大煜书院执行院长
Gender:Male
Alma Mater:University of Washington
Degree:Doctoral Degree
School/Department:Department of Chemical Engineering
Discipline:Chemical Engineering
Business Address:Chemical Engineering Building D211
Contact Information:+86-411-84986513
E-Mail:bingbingsun@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2019-11-01

Journal:ACS NANO

Included Journals:PubMed、SCIE

Volume:13

Issue:11

Page Number:13065-13082

ISSN No.:1936-0851

Key Words:metal oxide nanoparticles; metabolomics; nanotoxicity; bronchial epithelial cells; mass spectrometry

Abstract:The widespread use of metal oxide nanoparticles (MOx NPs) poses a risk of exposure that may lead to adverse health effects on humans. Even though a number of toxicological methodologies are available for assessing nanotoxicity, the effect of MOx NPs on cell metabolism in vitro and in vivo remains largely unknown, especially under the exposure to low-dose or supposedly low-toxicity MOx NPs. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in human bronchial epithelial cells exposed to four different types of MOx NPs (ZnO, SiO2, TiO2, and CeO2) at both high (25 mu g/mL) and low (12.5 mu g/mL) doses. We demonstrated that high-dose ZnO NPs caused severe cytotoxicity with altered metabolism of amino acids, nucleotides, nucleosides, tricarboxylic acid cycle, lipids, inflammation/redox, and fatty acid oxidation, as well as the elevation of toxic and DNA damage related metabolites. Fewer metabolomic alterations were induced by low-dose ZnO NPs. However, most metabolites significantly altered by high-dose ZnO NPs were also slightly changed by low-dose ZnO NPs. On the other hand, the cells exposed to SiO2, TiO2, and CeO2 NPs at either high or low dose displayed low cytotoxicity with similar metabolomic alterations, although each type of NPs induced distinct changes of certain metabolites. These three NPs significantly affected the metabolic pathways of sphingosine-1-phosphate, fatty acid oxidation, folate cycle, inflammation/redox, and lipid metabolism. In addition, dose-dependent effects were observed for a number of metabolites significantly altered by respective MOx NPs. Representative metabolites of the significantly altered metabolic pathways were successfully validated in vitro using enzymatic assays. More importantly, these representative metabolites were further validated in a mouse model after lung exposure to respective NPs, indicating that in vitro metabolomic findings may be used to effectively predict the toxicological effects in vivo. Despite functional assay results demonstrating that the changes in cellular functions were largely reflected by the metabolomic alterations, LC-MS-based metabolomics was sensitive enough to detect the subtle metabolomic changes when functional cellular assays showed no significant difference. Collectively, our studies have unveiled potential metabolic mechanisms of MOx NP-induced nanotoxicity in lung epithelial cells and demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict nanotoxicity in vivo.