Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Bingbing Sun

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Main positions:大煜书院执行院长
Gender:Male
Alma Mater:University of Washington
Degree:Doctoral Degree
School/Department:Department of Chemical Engineering
Discipline:Chemical Engineering
Business Address:Chemical Engineering Building D211
Contact Information:+86-411-84986513
E-Mail:bingbingsun@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core-Shell Nanoparticles

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2021-01-08

Journal:NANO LETTERS

Volume:19

Issue:7

Page Number:4478-4489

ISSN No.:1530-6984

Key Words:Au@Ag; core-shell; electron compensation; safety; biomedical application

Abstract:Silver nanoparticles (Ag NPs) have promising plasmonic properties, however, they are rarely used in biomedical applications because of their potent toxicity. Herein, an electron compensation effect from Au to Ag was applied to design safe Au@Ag core-shell NPs. The Ag shell thickness was precisely regulated to enable the most efficient electron enrichment in Ag shell of Au@Ag-2.4 NPs, preventing Ag oxidation and subsequent Ag+ ion release. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analysis revealed the electron transfer process from Au core to Ag shell, and inductively coupled plasma optical emission spectroscopy analysis confirmed the low Ag+ ion release from Au@Ag-2.4 NPs. Bare Au@Ag-2.4 NPs showed much lower toxicological responses than Ag NPs in BEAS-2B and Raw 264.7 cells and acute lung inflammation mouse models, and PEGylation of Au@Ag-2.4 NPs could further improve their safety to L02 and HEK293T cells as well as mice through intravenous injection. Further, diethylthiatri carbocyanine iodide attached pAu@Ag-2.4 NPs exhibited intense surface-enhanced Raman scattering signals and were used for Raman imaging of MCF7 cells and Raman biosensing in MCF7 tumor-bearing mice. This electron compensation effect opens up new opportunity for broadening biomedical application of Ag-based NPs.