孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-Mounted Metal Organic Framework

点击次数:

论文类型:期刊论文

发表时间:2018-01-11

发表刊物:JOURNAL OF PHYSICAL CHEMISTRY C

收录刊物:SCIE、EI、Scopus

卷号:122

期号:1

页面范围:50-61

ISSN号:1932-7447

摘要:Ordered porphyrin-based metal organic frameworks (MOFs) may serve as a model for mimicking the natural photosynthesis with highly ordered chlorophylls, i.e., porphyrin-like chromophores. Study of light harvesting and energy transfer as the primary event of photosynthesis is of great importance leading to improvement of photovoltaics overall performance. Detailed characterization of ultrafast dynamics of zinc tetraphenylporphyrin (ZnTPP) surface mounted metal organic framework (SURMOF) is reported by using various steady-state and time-resolved laser spectroscopic techniques, i.e., time correlated single photon counting, fluorescence up-conversion and transient absorption pump-probe with 20 fs resolution. Obtained results in these nanoporous materials were compared with corresponding results for ZnTPP in ethanol measured under the same conditions. Dramatic quenching of both upper excited singlet state S-2 and first excited state SI was observed. Subpicosecond and picosecond lifetimes were detected in transient fluorescence and absorption. Analytical formulas are derived for the linear absorption, steady-state fluorescence, and fluorescence up-conversion signals. Theoretical description excellently reproduces experimental time and frequency resolved signals. Strong quenching of the femtosecond transients in SURMOF is explained in terms of highly efficient Forster resonance energy transfer between the neighboring porphyrin moieties which is caused by a strong spectral overlap of absorption and steady-state fluorescence spectra and quantum coherent energy transfer and redistribution.