个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency
点击次数:
论文类型:期刊论文
发表时间:2018-01-15
发表刊物:Advanced Energy Materials
收录刊物:EI
卷号:8
期号:2
ISSN号:16146832
摘要:Tremendous progress has recently been achieved in the field of perovskite solar cells (PSCs) as evidenced by impressive power conversion efficiencies (PCEs); but the high PCEs of >20% in PSCs has so far been mostly achieved by using the hole transport material (HTM) spiro-OMeTAD; however, the relatively low conductivity and high cost of spiro-OMeTAD significantly limit its potential use in large-scale applications. In this work, two new organic molecules with spiro[fluorene-9,9 ?xanthene] (SFX)-based pendant groups, X26 and X36, have been developed as HTMs. Both X26 and X36 present facile syntheses with high yields. It is found that the introduced SFX pendant groups in triphenylamine-based molecules show significant influence on the conductivity, energy levels, and thin-film surface morphology. The use of X26 as HTM in PSCs yields a remarkable PCE of 20.2%. In addition, the X26-based devices show impressive stability maintaining a high PCE of 18.8% after 5 months of aging in controlled (20%) humidity in the dark. We believe that X26 with high device PCEs of >20% and simple synthesis show a great promise for future application in PSCs, and that it represents a useful design platform for designing new charge transport materials for optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim