孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State

点击次数:

论文类型:期刊论文

发表时间:2019-04-01

发表刊物:ACS ENERGY LETTERS

收录刊物:SCIE、EI

卷号:4

期号:4

页面范围:943-951

ISSN号:2380-8195

关键字:Electron injection; Electrons; Energy dissipation; Excited states; Solar cells; Titanium dioxide, Double bonds; Hot injection; Kinetic study; Laser-spectroscopic technique; Locally excited state; Minimizing energy; Power conversion efficiencies; Time-resolved, Dye-sensitized solar cells

摘要:The electron-injection energy losses of dye-sensitized solar cells (DSSCs) are among the fundamental problems hindering their successful breakthrough application. Two triazatruxene (TAT)-based sensitizers, with one containing a flexible Z-type double bond and another a rigid single bond, coded as ZL001 and ZL003, respectively, have been synthesized and applied in DSSCs to probe the energy losses in the process of electron injection. Using time-resolved laser spectroscopic techniques in the kinetic study, ZL003 with the rigid single bond promotes much faster electron injection into the conductive band of TiO2 especially in the locally excited state (hot injection), which leads to higher electron density in TiO2 and a higher V-oc. The devices based on ZL003 exhibited a champion power conversion efficiency (PCE) of 13.6% with V-oc = 956 mV, J(sc) = 20.73 mA cm(-2), and FF = 68.5%, which are among the highest recorded results to date on single dye-sensitized DSSCs. An independent certified PCE of 12.4% has been obtained for devices based on ZL003.