个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
Surface-Supported Metal-Organic Framework Thin-Film-Derived Transparent CoS1.097@N-Doped Carbon Film as an Efficient Counter Electrode for Bifacial Dye-Sensitized Solar Cells
点击次数:
论文类型:期刊论文
发表时间:2019-04-24
发表刊物:ACS APPLIED MATERIALS & INTERFACES
收录刊物:PubMed、SCIE、EI
卷号:11
期号:16
页面范围:14862-14870
ISSN号:1944-8244
关键字:metal-organic framework thin films; CoS1.097@N-doped carbon film; dye-sensitized solar cells; counter electrode; SURMOF; electrocatalysis
摘要:An effective design for counter electrode (CE) catalytic materials with superior catalytic activity, excellent stability, low cost, and a facile fabrication process is urgently needed for industrialization of dye-sensitized solar cells (DSSCs). Herein, we report a facile in situ method to fabricate transparent CoS1.097 anchored on an N-doped carbon film electrode through sulfurization of a cobalt metalloporphyrin metal organic framework thin film on fluorine-doped tin oxide glass. The transparent film as counter electrode in bifacial DSSCs exhibited higher power conversion efficiency (9.11% and 6.64%), respectively, from front and rear irradiation than that of Pt (8.04% and 5.87%). The uniformly dispersed CoS1.097, nanoparticles on an N-doped carbon film provide a large catalytic active area and facilitate the electron transfer, which leads to the excellent catalytic ability of the CoS1.097@N-doped carbon film. In addition, the in situ preparation of the uniform film with a nanosheet structure offers high electrical conductivity and unobstructed access for the diffusion of triiodide to available electroactive sites, resulting in excellent device performance with superior long-term stability over 1000 h under natural conditions.