孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The Central Role of Ligand Conjugation for Properties of Coordination Complexes as Hole-Transport Materials in Perovskite Solar Cells

点击次数:

论文类型:期刊论文

发表时间:2019-09-01

发表刊物:ACS APPLIED ENERGY MATERIALS

收录刊物:EI、SCIE

卷号:2

期号:9

页面范围:6768-6779

ISSN号:2574-0962

关键字:ligand conjugation; coordination complex; porphyrin; hole-transport material; perovskite

摘要:Two zinc-based coordination complexes Y3 and Y4 have been synthesized and characterized, and their performance as hole-transport materials (HTMs) for perovskite solar cells (PSCs) has been investigated. The complex Y3 contains two separate ligands, and the molecular structure can be seen as a disconnected porphyrin ring. On the other hand, Y4 consists of a porphyrin core and therefore is a more extended conjugated system as compared to Y3. The optical and redox properties of the two different molecular complexes are comparable. However, the hole mobility and conductivity of Y4 as macroscopic material are remarkably higher than that of Y3. Furthermore, when employed as hole-transport materials in perovskite solar cells, cells containing Y4 show a power conversion efficiency (PCE) of 16.05%, comparable to the Spiro-OMeTAD-based solar cells with an efficiency around 17.08%. In contrast, solar cells based on Y3 show a negligible efficiency of about 0.01%. The difference in performance of Y3 and Y4 is analyzed and can be attributed to the difference in packing of the nonplanar and planar building blocks in the corresponding materials.