孙亚琴

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:生物工程学院

学科:生物化工

电子邮箱:sunyaqin@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1,3-propanediol from crude glycerol by microbial consortium.

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:Bioprocess and biosystems engineering

收录刊物:PubMed、SCIE

卷号:41

期号:8

页面范围:1079-1088

ISSN号:1615-7605

关键字:1,3-Propanediol; Microbial consortium; Ionic liquids; Crude glycerol

摘要:Ionic liquids (ILs) as "green" solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol as a by-product in biodiesel production is an ideal feedstock for the microbial production of 1,3-propanediol (PDO), which is a versatile bulk chemical. PDO can be produced by microbial consortium with the advantages of high substrate tolerance and narrow by-product profile. In the present study, the effect of IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][TfO]) was evaluated on the capacity of PDO production from crude glycerol by microbial consortium DL38-BH. In the batch fermentation at 60g/L crude glycerol and 10g/L [Emim][TfO], the concentration and yield of PDO from glycerol increased from 23.14g/L and 0.45mol/mol to 31.17g/L and 0.60mol/mol, respectively. Our results showed that [Emim][TfO] decreased the ratio of intracellular NADH to NAD+ and increased the concentration of 3-HPA during batch fermentation. The activities of three key enzymes in glycerol metabolism were stimulated by [Emim][TfO] during the batch fermentation by microbial consortium DL38-BH. Compared to the control, the proportion of Klebsiella genus which could convert glycerol to PDO increased significantly from 79.19% to 89.49% and the other genera that did not produce PDO were dramatically decreased (P<0.05) at the end of batch fermentation. This work demonstrated that [Emim][TfO] significantly improved the concentration and yield of PDO from crude glycerol by adjusting microbial community during batch fermentation by microbial consortium.