个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:交通运输系
学科:道路与铁道工程. 市政工程
办公地点:综合实验4号楼520室
电子邮箱:sunyiren@dlut.edu.cn
Analysis of load-induced top-down cracking initiation in asphalt pavements using a two-dimensional microstructure-based multiscale finite element method
点击次数:
论文类型:期刊论文
发表时间:2019-07-01
发表刊物:ENGINEERING FRACTURE MECHANICS
收录刊物:SCIE、EI
卷号:216
ISSN号:0013-7944
关键字:Asphalt pavement; Multiscale; Top-down cracking; Viscoelasticity; Cohesive zone
摘要:Load-induced top-down cracking is one of the major types of asphalt pavement deterioration; however, its initiation mechanisms have not been fully understood so far, which makes it very difficult to effectively consider this failure pattern in the pavement design procedures. To address this issue, the present study developed a two-dimensional microstructure-based multiscale finite element model, in which material properties on two physical length scales, i.e., the local (mixture level) and global (pavement level) scales, were incorporated in the computation and linked through a homogenization process. A digital image processing (DIP) technology was employed to develop the two-dimensional local-scale representative volume element (RVE) model that considered the realistic heterogeneous microstructure of asphalt concrete (AC), and a bilinear cohesive zone model was applied to simulating the local-scale damage initiation and evolution in the RVEs. Two typical pavement structures, with cement-treated base (CTB) and granular base (GB) respectively, were taken into account to interpret the influence of the global-scale pavement configurations on top-down cracking performance. The results showed that the significant nearsurface transverse tensile stress just outside the fire edge could be the primary cause of the top-down cracking. For the pavement with CTB, the top-down cracking was the predominant type of fatigue failure, whereas for the pavement with GB, the bottom-up cracking was the main pattern of fatigue failure. Besides, as the temperature increased, more damage was induced under the same traffic loading due to the reduced tensile strength of AC. It was also found on the local scale that the significant tensile stress within the mortar matrix phase probably acted as the driving force of the microcrack initiation and propagation and the effects of the shear traction on the damage evolution in the AC layer increased with the temperature.