唐大伟

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 海洋能源利用与节能教育部重点实验室副主任

性别:男

毕业院校:静冈大学

学位:博士

所在单位:能源与动力学院

学科:工程热物理. 能源与环境工程

电子邮箱:dwtang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Molecular dynamics simulation of effects of nanoparticles on frictional heating and tribological properties at various temperatures

点击次数:

论文类型:期刊论文

发表时间:2020-06-01

发表刊物:FRICTION

收录刊物:SCIE

卷号:8

期号:3

页面范围:531-541

ISSN号:2223-7690

关键字:nanoparticles; molecular dynamics; temperature; tribological properties

摘要:The temperature of a friction pair exerts considerable influence on the tribological behavior of a system. In two cases, one with and the other without Cu (copper) nanoparticles, the temperature increase in friction pairs caused by frictional heating and its tribological properties at various temperatures are studied by using the molecular dynamics approach. The results show that temperature distribution and surface abrasion are significantly improved by the presence of Cu nanoparticles. This is one of the reasons for the improvements in tribological properties achieved in the presence of nanoparticles. The temperature and range of influence of frictional heating for the model without nanoparticles are significantly increased with the increase in the sliding velocity; however, in the model with nanoparticles, the temperature gradient is confined to the area near the Cu film. With an increase in the temperature of the friction pair, the improvement in anti-wear properties associated with the presence of Cu nanoparticles becomes more significant.