![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:港口、海岸及近海工程
办公地点:Room A305
State Key Laboratory of Coastal and Offshore Engineering
联系方式:0411-84707103
电子邮箱:bteng@dlut.edu.cn
Identification of hydrodynamic coefficients from experiment of vortex-induced vibration of slender riser model
点击次数:
论文类型:期刊论文
发表时间:2011-07-01
发表刊物:SCIENCE CHINA-TECHNOLOGICAL SCIENCES
收录刊物:SCIE、EI
卷号:54
期号:7
页面范围:1894-1905
ISSN号:1674-7321
关键字:vortex-induced vibration; deepwater riser; hydrodynamic coefficients; finite element method; dynamic response
摘要:One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/diameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 m/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping.