吴锋
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2017-05-01
发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
收录刊物:SCIE、EI
卷号:318
页面范围:431-455
ISSN号:0045-7825
关键字:Shallow water wave equation; Hamilton variational principle; Symplectic; Lagrangian method; Displacement
摘要:In this paper, the shallow water wave problem is discussed in the Lagrangian description. By using the Hamilton variational principle in analytical mechanics, a displacement shallow water wave equation (DSWWE) is developed for the shallow water wave problem with a sloping water bottom and wet-dry interface. A numerical scheme based on the discretized Hamilton principle is constructed for solving the proposed displacement shallow water wave equation. The proposed numerical scheme is symplectic and explicit, and can preserve the total energy and mass of the shallow water system in the discrete sense. The correctness of the DSWWE and the effectiveness of the proposed numerical scheme are verified by using four classical numerical examples. Numerical examples show that the proposed method performs well with respect to the simulation of the shallow water problem with a sloping water bottom and wet-dry interface. (C) 2017 Elsevier B.V. All rights reserved.