• 其他栏目

    王博

    • 教授     博士生导师 硕士生导师
    • 主要任职:党委常委、副校长
    • 其他任职:工业装备结构分析优化与CAE软件全国重点实验室副主任
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学
    • 办公地点:工程力学系系楼304房间
    • 联系方式:
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint

    点击次数:

      发布时间:2019-03-09

      论文类型:期刊论文

      发表时间:2015-09-01

      发表刊物:THIN-WALLED STRUCTURES

      收录刊物:Scopus、EI、SCIE

      卷号:94

      页面范围:325-333

      ISSN号:0263-8231

      关键字:Non-probabilistic reliability-based design; optimization; Single-ellipsoid convex model; Stiffened shells; Buckling; Adaptive chaos control

      摘要:Stiffened shells are affected by numerous uncertainty factors, such as the variations of manufacturing tolerance, material properties and environment aspects, etc. Due to the expensive experimental cost of stiffened shell, only a limited quantity of statistics about its uncertainty factors are available. In this case, an unjustified assumption of probabilistic model may result in misleading outcomes of reliability-based design optimization (RBDO), and the non-probabilistic convex method is a promising alternative. In this study, a hybrid non-probabilistic convex method based on single-ellipsoid convex model is proposed to minimize the weight of stiffened shells with uncertain-but-bounded variations, where the adaptive chaos control (ACC) method is applied to ensure the robustness of search process of single-ellipsoid convex model, and the particle swarm optimization (PSO) algorithm together with smeared stiffener model are utilized to guarantee the global optimum design. A 3 m-diameter benchmark example illustrates the advantage of the proposed method over RBDO and deterministic optimum methods for stiffened shell with uncertain-but-bounded variations. (C) 2015 Elsevier Ltd. All rights reserved.