个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
geecure: An R-package for marginal proportional hazards mixture cure models
点击次数:
论文类型:期刊论文
发表时间:2018-07-01
发表刊物:COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
收录刊物:SCIE
卷号:161
页面范围:115-124
ISSN号:0169-2607
关键字:Clustered survival data; Mixture cure models; Marginal approach; Estimating equations; Expectation-Solution algorithm; R package
摘要:Background and objective : Most of available software packages for mixture cure models to analyze survival data with a cured fraction assume independent survival times, and they are not suitable for correlated survival times, such as clustered survival data. The objective of this paper is to present a software package to fit a marginal mixture cure model to clustered survival data with a cured fraction.
Methods : We developed an R package geecure that fits the marginal proportional hazards mixture cure (PHMC) models to clustered right-censored survival data with a cured fraction. The dependence among the cure statuses and among the survival times of uncured patients within a cluster are modeled by working correlation matrices through the generalized estimating equations, and the Expectation-Solution algorithm is used to estimate the parameters. The variances of the estimated regression parameters are estimated by either a sandwich method or a bootstrap method.
Results : The package geecure can fit the marginal PHMC model where the cumulative baseline hazard function is either a two-parameter Weibull distribution or specified nonparametrically. Fitting the parametric PHMC model with the Weibull baseline hazard function on average takes less time than fitting the semiparametric PHMC model does. Two variance estimation methods are comparable in the simulation study. The sandwich method takes much less time than the bootstrap method in variance estimation.
Conclusions : The package geecure provides an easy access to the marginal PHMC models for clustered survival data with a cured fraction in routine survival analysis. It is easy to use and will make the wide applications of the marginal PHMC models possible. (C) 2018 Elsevier B.V. All rights reserved.