王晓光

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:概率论与数理统计. 金融数学与保险精算

办公地点:数学科学学院5楼

电子邮箱:wangxg@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Efficient estimation for the non-mixture cure model with current status data

点击次数:

论文类型:期刊论文

发表时间:2020-07-03

发表刊物:STATISTICS

收录刊物:SCIE

卷号:54

期号:4

页面范围:756-777

ISSN号:0233-1888

关键字:Current status data; non-mixture cure model; sieve maximum likelihood estimation; EM algorithm; asymptotic normality

摘要:Medical advances including the neoadjuvant anti-PD-1 immunotherapy play a role in promoting clinical outcomes such as improved overall and progression-free survival probabilities. This paper considers the regression analysis of current status data with a cured subgroup in the population using a semiparametric non-mixture cure model. We propose a sieve maximum likelihood estimation for the model with the Bernstein polynomials. Moreover, an expectation-maximization (EM) algorithm is developed under the non-mixture cure model to calculate the estimators for both parametric and non-parametric components. Under some mild conditions, the asymptotic properties of the estimators are established, including the strong consistency, the convergence rate and the asymptotic normality. Simulation studies are conducted to investigate the finite sample performance of the proposed estimators. A real dataset from the tumorigenicity experiment is analysed for illustration.